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Abstract

Background: Computing the distance between two RNA secondary structures can contribute in understanding

the functional relationship between them. When used repeatedly, such a procedure may lead to finding a query

RNA structure of interest in a database of structures. Several methods are available for computing distances

between RNAs represented as strings or graphs, but none utilize the RNA representation with dot plots. Since

dot plots are essentially digital images, there is a clear motivation to devise an algorithm for computing the

distance between dot plots based on image processing methods.

Results: We have developed a new metric dubbed ’DoPloCompare’, which compares two RNA structures. The

method is based on comparing dot plot diagrams that represent the secondary structures. When analyzing two

diagrams and motivated by image processing, the distance is based on a combination of histogram correlations

and a geometrical distance measure. We illustrate the procedure by an application that utilizes this metric on

RNA sequences in order to locate peculiar point mutations that induce significant structural alternations relative

to the wild type predicted secondary structure. The method was tested on several RNA sequences with known

secondary structures to affirm their prediction, as well as on a data set of ribosomal pieces. These pieces were

computationally cut from a ribosome for which an experimentally derived secondary structure is available, and on

each piece the prediction conveys similarity to the experimental result. The new algorithm shows benefit when

compared to standard methods used for assessing the distance similarity between two RNA secondary structures.
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Conclusions: Inspired by image processing, we have managed to provide a conceptually new and potentially

beneficial metric for comparing two RNA secondary structures, and illustrated it on an application that utilized

the measurement to detect conformational rearranging point mutations on an RNA sequence.

Background

In the past several years, interesting novel RNAs were discovered that carry a diverse array of

functionalities. By now, it is well known that RNAs are considerably involved in mediating the synthesis of

proteins, regulating cellular activities, and exhibiting enzyme-like catalysis and post-transcriptional

activities. In many of these cases, knowledge of the RNA secondary structure can be helpful to

understanding its functionality.

The importance of the secondary structure of RNAs presents a need for tools that rely on comparing two

RNA secondary structures, which may indicate a functional commonality or divergence between them.

These tools can usually accompany secondary structure prediction packages by energy minimization such

as Mfold [1] and the Vienna package [2]. Calculating the distance between RNA structures have been

approached by several methods, some of which are based on the edit distance of a tree representation of

the RNA secondary structure elements [3–5]. An edit distance on homeomorphically irreducible trees

(HITs) [6] was one of the original proposals for a comparison method. A different method was based on the

alignment of a string representation of the secondary structures [7, 8], where parenthesis represent the

base-pairs, and another symbol represents unpaired nucleotides [5]. This representation is known as the

dot-bracket representation. All aforementioned comparison methods were implemented as part of the

Vienna RNA package [2, 5]. More recent suggestions for RNA secondary structure comparisons include the

use of context free grammars [9], and a more general edit distance under various score schemes [10,11]. A

method for a rapid similarity analysis using the Lempel-Ziv algorithm was suggested in [12]. Another

method uses the second eigenvalue of the tree graph representation for the structures comparison, [13], and

was later integrated into the RNAMute, [14], Java tool, which we will use for our application illustration.

Certain RNA molecules can act as conformational switches, by alternating between two states, and thereby

changing their functionality [15–19]. RNA conformational switching was found to be involved in cell

processes such as mRNA transcription, translation, splicing, synthesis and regulation. Given a
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thermodynamically stable RNA structure, we can try to predict a conformational rearranging point

mutation by traversing all possible single point mutations of a sequence and locate the most significant

ones, in terms of secondary structure difference [20]. RNAMute [14] and RDMAS [21] are tools that

attempt to perform such predictions and are based on energy minimization methods [1, 2]. The RNAMute

mutation analysis tool, [14], includes RNAdistance from [2,5]: the RNA edit distance of the dot bracket

representation as a fine-grain comparison method, and the edit distance of the Shapiro representation,

[3, 4], as a coarse-grain comparison method.

Here, we propose an alternative distance measure, motivated by image processing and pattern recognition.

The new metric is based on an analysis of the dot plot diagrams of the secondary structures, and uses

histogram based correlation and plane group distance to calculate the similarity between the diagrams.

The measure combines both fine and coarse elements in the structure and can offer an alternative method

to the aforementioned distance measures, with a critical advantage in applications that use energy and

probability dot plots for the analysis of secondary structures. We have developed a stand-alone procedure

called DoPloCompare, which receives two RNA structures as an input, and calculates their similarity grade

using our new distance measure algorithm. In order to illustrate our metric, we have built an application

that uses the DoPloCompare procedure to predict the most significant point-mutation in a given sequence

that will alter its secondary structure to form a new conformation. Our system uses a user defined external

folding program. In the results of this paper it relies on the folding predictions of Mfold, [1], and the

Vienna RNA package [5], both using the expanded energy rules by [22] to predict the folding of RNA

sequences.

In the following sections we will describe the new procedure DoPloCompare, its application details, and the

results obtained when applying the system on three well-studied structures [23–25]. These systems were

already examined in [13] in this context. Additionally, we apply DoPloCompare on a ribosomal small RNA

sequences data set extracted from [26], and discuss its contribution alongside commonly used routines such

as the RNAdistance [5].

DoPloCompare - Comparing Two RNA Secondary Structures

The basis for our algorithm is the fact that a base–pairing indicator dot plot diagram is a sound

representation of the RNA secondary structure, as will be detailed in the next Section. In general, a dot

plot is a matrix comparison of two sequences (or one with itself) and is prepared by sliding a window of

user-defined size along both sequences. If the two sequences within that window match with a precision set
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by the mismatch limit, a dot is placed in the middle of the window signifying a match [27]. In the case of

RNA sequences, we assume that a similarity between dot plot diagrams of two sequences is a good

criterion for similarity between the secondary structures of those sequences.

Given two dot plot diagrams of two secondary structures, we would like to develop a distance grade that

best indicates how well the secondary structures attached to the diagrams resemble each other. When two

structures are similar, we require that the distance between their representing dot plot diagrams to be

small, and alternatively, when the structures are different, we require that the distance will increase.

Observations

Two main observations served as motivation in establishing the distance calculation formula. The first is

that similar secondary structures will maintain matching dot plot diagrams with dots in the same or in

close positions. Obviously, two secondary structures will look alike if all or most of the base-pairing couples

will be located in the same or in proximal places in the sequences. The second observation is that two

secondary structures will count as similar if both the number and order of the elements they contain are

the same [13]. For example, two RNA structures with four stems can be considerably different if the first

structure is arranged as a one elongated structure containing a bulge and three loops (see Figure 1B), while

the second includes a bulge, a multi-branch loop, and two additional set-loops that branch out of the

multi-branch loop (see Figure 1A). From the second observation, we concluded that the calculation should

also reflect the overall arrangement of elements in the secondary structure, and the groups of points in the

dot plot diagrams accordingly.

Distance Calculation

Taking into account the two observations, we have developed the following distance grade formula.

Let O be the dot plot diagram of the original sequence representing its secondary structure.

Let M be the dot plot diagram of the mutated sequence representing its secondary structure.

Then:

Distance Grade(O, M) =
Dist(O, M)
Corr(O, M)

(1)

Where Corr stands for Correlation and Dist stands for Distance. For the Correlation part we used the

histograms method as detailed in the Methods Section. In our implementation, we used a 4–dimensional

histograms correlation:
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Corr(O, M) =

√
Xc(O,M)× Y c(O, M)×Dc(O, M)× Ic(O, M) (2)

Where:

• Xc(O,M) is the correlation grade (see Equation 4 in Methods) between the vectors that sums all the

points on each X column of the matrix

• Yc(O,M) is the correlation grade between the vectors that sums all the points on each Y row of the

matrix

• Dc(O,M) is the correlation grade between the vectors that sums all the points on each Diagonal

SW-NE

• Ic(O,M) is the correlation grade between the vectors that sums all the points on each Inverse

Diagonal SE-NW

For the distance part we used the RMS distance as explained in the Methods Section.

Formulas Explanation

The histogram correlation compares the locations of every pi and pj under the best matching shift, where

pi is a pixel in the original sequence’s dot plot diagram, and pj is a pixel in the mutated sequence’s dot

plot diagram. However, in some cases small differences in the locations of the pixels between the original

and the mutated dot plot diagrams, reduces the correlation grade. Literally, the grade is reduced for every

pixel in the original dot plot that is not placed on the same exact location as a pixel in the mutated dot

plot. For this reason, we introduce a distance measure between the dot plot diagrams, in addition to the

histogram correlation.

The distance measure is more tolerant to small differences and represent overall proximity between the sets

of points. Moreover, if a pixel in the original dot plot is not placed on top of a pixel in the compared dot

plot, the correlation grade will be reduced equally, regardless of the distance between the pixels, while the

distance measure will be reduced in a direct proportion to the distance between the pixels.

5



DoPloCompare Program Flow

DoPloCompare receives two RNA secondary structures as input, either in a dot bracket notations or as two

ct files (produced by Mfold [1]). The main flow of the algorithm is made of three parts:

1. Build the dot plot matrix from the secondary structures.

2. Compare the two structures using formula (1) for the distance grade. In order to normalize the

distance grade, it is divided by the length of the sequences.

3. Output the distance grade.

Building the Dot Plot Matrix

Taking the simple matrix characteristics (described in the Methods Section), one can easily build such a

matrix by traversing a folding option received as an output of any folding program, and for every

base-pairing nucleotides couple in the sequence set the matching matrix cell value to 1 (other cell values

will be set to 0).

Application for Finding the Most Significant Point Mutation

The system is based on both histograms and geometry as the core comparing mechanism between the

original sequence secondary structure and all the possible point mutations’ folding variants. The algorithm

is composed of two major parts: pre-processing and main comparing mechanism. The pseudo–code of the

algorithm is given here:

Most_Significant_Mutation ( Original_Sequence )

BEGIN

Original_Matrix:= Built matrix

from the folding of Original_Sequence;

Max_Grade:=0;

Max_Sequence:=Original_Sequence;

WHILE ( Mutated_Sequence := Next

point mutation of Original_Sequence )

BEGIN

Mutated_Matrix:=Built matrix from the

folding of Mutated_Sequence;

Grade:=Distance grade between

Original_Matrix and Mutated_Matrix;

If ( Grade > Max_Grade )

BEGIN

Max_Grade:=Grade;

Max_Sequence:=Mutated_Sequence;

END

END

Return Max_Sequence;

END.
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System Parameters

The system has several parameters, including:

• Folding program – either MFOLD or Vienna’s RNAsubopt.

• Number of suboptimal folding options to be considered by the algorithm.

• Geometric distance measure to be used – either RMS or Hausdorff [28] distances. The default

measure is RMSD.

Pre-processing

The pre-processing part is divided to three steps (each is described in detail in the Methods Section):

1. Create all single–point–mutations in the original sequence.

2. Fold the mutated sequences using the folding program of choice.

3. From the folding program’s output, we build a dot plot like matrix.

Main Comparing Mechanism

The mutated and original secondary structures’ representing dot plot matrices are being compared using

the DoPloCompare application (see ‘DoPloCompare’ section). Each mutated sequence’s dot plot matrix

receives a distance grade, which represents its similarity to the original sequence’s representing matrix.

Output

At this stage, the algorithm finds the dot plot with the highest distance grade, i.e., the dot plot with the

greatest difference from the dot plot diagram of the original sequence. This dot plot represents the

secondary structure of one of the suboptimal folding options of a mutated sequence. The algorithm reports

this sequence, along with additional data:

1. A representation of the secondary structure - either a dot-bracket in the case of RNAsubopt or a ct

file in the case of Mfold.

2. The location of the point mutation and the replaced nucleotide (e.g., G15U).

3. The dot-plot-like matrix of the mutated sequence.
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In addition, for user convenience, the secondary structure and the dot-plot-like matrix elements of the

original sequence are also attached.

Results

In order to test our system capabilities, we applied it to three test cases that were used in [13] and

compared our results to the aforementioned work. Additionally, we tested our system on a data set of

ribosomal RNA pieces.

Wild Type Sequences

We will describe the results for three well-studied RNA sequences that were used in [13] for a

bioinformatics proof of concept. It is worthwhile noting that we are looking for the mutation with the

largest structural difference from the wild type, while in [13] the ultimate goal was to look for a mutation

that can lead to a bistable conformation. We successfully locate mutations that lead to a folding

rearrangement with large difference from the wild type structure, and that are similar to the ones found

in [13]. In addition to the second eigenvalue classification, we specifically compare our results to

RNAdistance’s dot bracket edit distance grade, which was mentioned but not directly used for comparison

in [13]. RNAdistance was later integrated into RNAMute [14].

Leptomonas collosoma

The first sequence is the spliced leader RNA from Leptomonas collosoma which was studied by LeCuyer

and Crothers [23], where they experimentally demonstrated a mutation induced RNA switch. In this test

case, our system reported a structure with one double strand segment and a hairpin. This structure is of

larger difference from the optimal wild type folding than the one reported in [13] that contains a bulge and

a hairpin. We assume that this difference emerges from the different folding parameters, because the

second eigenvalue of our result is also 1.0. A supporting fact for the latter is that when taking the largest

RNAdistance grade, we obtain the same mutation and suboptimal folding as ours. The results are

presented in Figure 2.

P5abc subdomain

The second sequence is the P5abc subdomain of the tetrahymena thermophila ribozyme that was studied

by Wu and Tinoco [24]. The results for the second sequence are found in Figure 1. In this test case, our
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system predicted the mutation G15C, which was also reported in [13] as a solution. When testing the

P5abc subdomain with Mfold, both G15C and G15U produced the same dot plot matrix in one of their

suboptimal folding options, thus receiving the same similarity grade. The mutation C22G produced a very

similar matrix, with a somewhat lower similarity grade. In this case, the largest RNAdistance grade was

received in the mutated structure of A4C, which is more similar to the original structure than our results.

Both the A4C mutation and the original structure contain a multi-branch loop, while our reported

mutation’s structure does not.

Hepatitis delta virus

The third sequence is taken from human hepatitis delta virus ribozyme that was studied by Lazinski et

al. [25], for its regulation of self-cleavage activity. The results for the third sequence are found in Figure 3.

In this test case, our system predicted the C31G mutation. The structure induced by this mutation is

similar to the one in [13]. The U40G that was suggested in their research [25] maintained a similarity grade

that was very close to the grade of our system result. In [25], the authors mention the existence of eight

possible mutations that provide the desired non-linear effect in the ribozyme structure, and this may

explain the variation. The largest RNAdistance score was recorded in a highly similar structure to the one

found by our system.

Ribosomal Data-set

We have generated a data set of small RNA sequences, containing fragments that were cut from the rRNA

of the thermus thermophilus [26]. This data set was built in order to test our system and compare its

results to the RNAdistance results. Labels for the data set can be found in the Supplementary Information

file. Out of the 21 RNA sequences in the data set, 16 produced the same exact mutation and structure as

the ones received by comparing the edit distance of the dot bracket representation of the folded structures.

Two sequences produced different mutations but highly similar structures to the results from RNAdistance.

Regarding the remaining three sequences, there was a difference between our system result and the largest

RNAdistance result:

1. Our proposed structure for the E (89) is different than the structure with the largest RNAdistance,

but it is non-obvious to determine which one of them is more significant, both of the mutations alter

the structure with respect to the original structure, as observed in Figure 4(A).
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2. Our proposed structure for the E (86, 87) is quite similar to the structure with the largest

RNAdistance. However, both the RNAdistance structure and the original structure contains an extra

loop. Thus, it can be argued that our proposed structure is less similar to the original one, as

observed in Figure 4(B).

3. Our proposed structure for the B (1052-1107) is less similar to the original structure than the

structure with the largest RNAdistance. Both the original and RNAdistance’s structures contain a

branch that is not present in our system’s result, as can be observed in Figure 4(C).

The ribosomal data set results are summarized in Table 1. Labelings for the sequences that are used in

Table 1 are reported in the Supplementary Information file.

Discussion and Future Work

We have described a method to compare two RNA secondary structures, and to assign a grade to this

comparison based on the similarity of their representing dot matrices. We have adopted this method to

predict the most significant point mutation for a given sequence in terms of its structural effect on the

wildtype, and provided good results in comparison to other known methods.

We have compared our application results to the commonly used RNAdistance module provided in the

Vienna package [2, 5], and the classification by the second eigenvalue that was provided for three example

test cases in [13]; the first result, from Leptomonas collosoma, was less similar to the original structure

than the one predicted in [13] (i.e., in this test case our system surpassed). However, we assume this

difference is partly caused by the different folding program and parameters. For the second result, the

P5abc subdomain, our system predicted a mutation that was proposed in [13], and on the final result, from

the hepatitis delta virusoid, we have predicted a very similar structure to the one found by the second

eigenvalue method. Overall our system matched or even outranked the second eigenvalue method results.

Concerning the results for the ribosomal data set, which were compared to RNAdistance’s results: the

results were identical in 16 out of the 21 RNA sequences, 2 sequences produced different mutations but

highly similar structures to the results from RNAdistance, and for the remaining 3 sequences, there was a

difference between our system results and the largest RNAdistance results. However, for these three

sequences, we argue that our results presented mutated structures with less similarity to the original

structures, when comparing to the structures with the largest RNAdistance. Thus, overall our system

outperformed RNAdistance results in at least some of the cases.
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The distance measure presented in this article, DoPloCompare, has several advantages with respect to

previously suggested techniques (most commonly used are the ones described in [5]):

• The measure is used with the dot plot representation, whereas to the best of our knowledge no other

measure was suggested beforehand for this type of representation. Probability and energy dot plots

have an increased potential to be used even more in the future, in cases where a more sophisticated

analysis is needed besides inspecting the predicted secondary structures. The measure is inversely

proportional to the similarity (or proportional to the dissimilarity) between the structures being

compared.

• The metric combines coarse and fine-grain characteristics, provided by the distance measure and the

correlation respectively, and thus balances both the distance between the nucleotides and the

structural elements (e.g., hairpin, loop, etc.) in the compared structures.

• DoPloCompare is easily tuned with regard to the distance function (Hausdorff, RMS, etc.), the

correlation algorithm (histograms correlations, traditional correlation, etc.) and their combination.

• DoPloCompare can receive the structures as input from a list of popular folding programs’ output

files, such as Mfold and the Vienna RNA package.

• DoPloCompare is incorporated into an application that predicts the most conformational rearranging

point mutations, and provides good results in comparison to known methods.

There are a number of avenues we propose to pursue in the future for the extension of DoPloCompare and

the presented application:

• DoPloCompare: operation on more sophisticated dot plots that contain more information (e.g.,

probability and / or energy values). Our technique using histogram correlation and RMS distance

permits for potential extensions that will utilize numerical values contained within dots, much like in

the case of digital images.

• DoPloCompare: integrate into the RNAMute mutation analysis tool [14].

• Finding the most conformational rearranging mutations: extend to handle deletions, insertions, and

multiple–point mutations using efficiency considerations.
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Conclusions

We have provided a new beneficial technique to compare secondary structures of RNA sequences. The

technique is robust and can be used as a baseline for other RNA structure based applications.

Methods
RNA Suboptimal Solutions

In order to make predictions based on an RNA secondary structure, we used the RNAsubopt [29] available

in the Vienna RNA package, a program that predicts all suboptimal secondary structures of a given

sequence based on thermodynamics and base-pairing rules [22]. Alternatively, we can use the suboptimal

solutions calculated by Mfold. RNAsubopt, like many other RNA folding approaches, uses a free energy

minimization procedure. It is expected that the native fold of the sequence is close to the minimum free

energy (mfe) structure. We are interested in all suboptimal solutions because in nature RNA folds into a

suboptimal structure (and also because of limitations of thermodynamic models), which may cause the mfe

structure to be different than the native fold. For a given sequence, RNAsubopt calculates all suboptimal

secondary structures within an energy range above the minimum free energy. It outputs the suboptimal

structures—sorted by mfe—in a dot-bracket notation, followed by the energy in kcals/mol. Originally, a

different method for calculating suboptimal solutions was devised by Zuker [30], and is used in Mfold.

Creating the Point Mutations

In order to create all the possible single point mutations for a given sequence, we simply traverse along the

sequence and for each position i do:

Let N1, N2 and N3 be the three possible nucleotides which are different than the nucleotide in position i.

Let SEQ(j,k) denote the subsequence starting in position j in the original sequence and ending at position

k (in case k < j return an empty sequence).

Return:

SEQ(1, i− 1) ◦N1 ◦ SEQ(i + 1,m)
⋃

SEQ(1, i− 1) ◦N2 ◦ SEQ(i + 1,m)
⋃

SEQ(1, i− 1) ◦N3 ◦ SEQ(i + 1,m)

Where m is the original sequence length.
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Dot Plot Diagrams

A dot plot is a diagram comprised of dots on two axes. Each of the axis represents some sort of data. A

dot in location (x, y) represents some measure between the location x in the X-data axis and location y in

the Y-data axis. For example, the axis can represent two sentences, and the dots can represent the

locations where the sentence on the X-axis and the sentences on the Y-axis contain the same word.

In biology, dot plots are often utilized for representing alignments between sequences. Specifically in RNA,

a dot plot is often used as an image representation of an optimal base-pairing between any two nucleotides

in the RNA sequence, based on minimum free energy consideration. Both Mfold [1] and the Vienna RNA

package [5] present dot plots as part of their standard outputs, but instead of dots they use squares. Mfold

presents dot plot diagrams based on the minimum free energy of the suboptimal folding options of the

sequence, where each folding option squares are painted with a different color. Vienna-RNA, on the other

hand, presents a different dot plot diagram where each square in the diagram represents the probability of a

base-pairing in that location in the sequence; the larger the probability, the larger the representing square.

In our approach, we compare each folding option separately, and require a separate dot plot diagram for

each suboptimal solution (as opposed to Mfold’s dot plot, for example). To comply with this constraint, we

created a simplified dot-plot-like matrix with the following properties:

1. Let LEN be the length of the sequence being observed, then the matrix is of two dimensions, and of

size LEN × LEN .

2. The matrix cell (i,j) can contain either one of the values {0,1} where 1 means that i match j in the

current folding option and 0 otherwise.

Giving the fact that if i matches j, j will also match i, clearly the matrix is symmetric along the diagonal.

Histograms

Histograms have been widely and very successfully used in image processing and shape analysis. Although

originally they were used to study the data statistics, they have recently been found to be critical for

identification, recognition, and distance computations as well, e.g., [31, 32]. Such histograms constitute the

building block of most state of-the-art shape identification and classification systems. Moreover, it has

been recently shown that under very general conditions, histograms can uniquely identify a shape with

extremely high probability [33]. This provides a very clear motivation to consider histograms for RNA

secondary structure analysis, as suggested in this paper.
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In order to explain the “Dist” and “Corr” components of Equation (1) in more detail, we will first

concentrate on “Corr” (which is, in our case, the Cross Correlate expressed in Equation 4). Next, in the

subsection about the distance between groups of points in the plane, we will concentrate on “Dist” (which

is, in our case, the RMSD expressed in Equation 5).

In this manuscript we are using normalized cross-correlation between two one-dimensional vectors.

Cross correlation is a standard method of estimating the degree to which two vectors are correlated.

Consider two vectors, X(i) and Y (i), where i = 0, 1, 2...N − 1.

The cross correlation Corr at delay d is defined as:

Corr(d) =
∑

i[(X(i)−MX)× (Y (i− d)−MY )]√∑
(X(i)−MX)2 ×∑

(Y (i− d)−MY )2
(3)

Where MX and MY are the means of the corresponding series, and d = 0, 1, 2, ...N − 1 represents all the

possible delays.

In this paper we refer to the cross correlation between X and Y as:

Cross Correlate(X, Y ) = Maxd(Corr(d)) (4)

Where Corr(d) is as defined in Equation 3.

In order to build a one–dimensional series vector from the two–dimensional matrix that represents the

original Dot Plot diagram, we traverse the diagram, each time on a specific axis, and sum all the values on

that axis (e.g. sum all the columns on the X axis, or sum all the rows on the Y axis). In this manner we

obtain a one–dimensional vector for each axis, which can be correlated to the matching axis vector of the

second matrix that represents the mutated Dot Plot diagram (see example in Figure 5).

The Cross-Correlation grade will be maximal when the two compared vectors are identical, or contain

identical areas. We have used this feature in our assumptions, as explained in the DoPloCompare Section

under the distance calculation subsection.

Distance Between Groups of Points in the Plane

The matching and analysis of geometric features is an important problem that arises in various

computational areas, e.g., computer vision and pattern matching . In general, we are given two sets of

points A and B, and we wish to determine how much they resemble each other (for more information

see [34]). Usually we can apply certain transformation on one of the sets, e.g., translate, scale and/or

rotate, in order to be matched with the other set as closely as possible.
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In order to measure affinity, various measure functions have been devised. Two such common measures are

the Hausdorff distance [34] and the root mean square distance (RMS) [35–37]. Note that the Hausdorff

distance has also been popular in image processing [28].

In this paper we use the RMS measure (e.g., Dist-RMS in Equation 5), but the system can be easily

adapted to use the Hausdorff measure or any other measure. No alignment between the groups is

performed, after several trials have shown no difference if an alignment is added, and therefore the

alignment procedure was removed for performance considerations.

The Root Mean Square distance for a set B from set A is:

RMSD(A, B) =

√
1
n

∑

a∈A

‖a−NB(a)‖2 (5)

Where n is the size of group A and NB(a) is the nearest neighbor of point a in group B.

The mark ‖ in this context refers to the Euclidean norm.

The measure simply sums and normalizes the distances between each point in A to its nearest neighbor in

set B. Clearly, when the two sets lie on top each other, the RMS score will be 0, Alternatively, for sets of

different spreading in the plane the RMS distance will increase.

RMS distance between groups of points uses nearest neighbor queries in order to find the point from the

other group from which to calculate each point’s distance. In order to calculate nearest neighbor queries we

implemented a version of planar Voronoi diagram [38], with pre-process time of O(n), which answers

nearest neighbor queries in O(log n) for a group of n locations in the plane. We chose not to further discuss

Voronoi diagram as its implementation and use has no influence on the system output but only on the

algorithm run-time.

In our approach, we look for the distance between groups of dots in the base-pairing plane, i.e., we look for

the RMS distance between two dot plot diagrams which is explained in detail in the “DoPloCompare”

Section under the distance calculation subsection.

Base-pairing Distance

As a baseline method for comparing two secondary structures we used RNAdistance, which is also part of

the Vienna-RNA package. It reads RNA secondary structures and calculates a “base-pair distance” given

by the number of base pairs present in one structure—but not the other.

We use this method as a measure of success in identifying the largest distance between the original

sequence and the mutated sequence.
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We compare our results to RNAdistance fine-grain method where two structures in dot-bracket notations

are being compared.
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Figures
Figure 1 - P5abc Subdomain

The predicted most significant mutation for the P5abc subdomain in the group I intron ribozyme of the T.

thermophila. (A) Wild-type folded structure along with its representing dot plot matrix. The computed

RNAfold global minimum energy is dG = -26.6. (B) The mutated folded structure with the largest

distance grade from DoPloCompare (DP) = 0.102. The RNAdistance grade for this structure (Rdist) = 28.

The computed RNAfold global minimum energy is dG = -18.8. (C) The mutated folded structure with the

largest RNAdistance grade (Rdist) = 32. The DoPloCompare grade (DP) = 0.070. The computed

RNAfold global minimum energy is dG = -22.2 kcals/mole.

Figure 2 - L. Collosoma

The predicted most significant mutation for the spliced leader RNA from L.collosoma. (A) Wild-type

folded structure along with its representing dot plot matrix. The computed RNAfold global minimum

energy is dG = -10.7. (B) The mutated folded structure with the largest distance grade from

DoPloCompare (DP) = 0.102. The largest RNAdistance grade was also recorded for this structure (Rdist)

= 52. The computed RNAfold global minimum energy is dG = -8.1 kcals/mole.

Figure 3 - Delta Virusoid

The predicted most significant mutation for the virusoid sequence from Hepatitis delta virus. (A)

Wild-type folded structure along with its representing dot plot matrix. The computed RNAfold global

minimum energy is dG = -68.6. (B) The mutated folded structure with the largest distance grade from

DoPloCompare (DP) = 0.023. The RNAdistance grade for this structure (Rdist) = 60. The computed

RNAfold global minimum energy is dG = -67.5. (C) The mutated folded structure with the largest

RNAdistance grade (Rdist) = 62. The DoPloCompare grade (DP) = 0.022. The computed RNAfold global

minimum energy is dG = -63.7 kcals/mole.

Figure 4 - Ribosomal Data-set Differences

Three examples from the ribosomal data set that produced differences between our system proposed

structure and the structure with the largest RNAdistance. (A) The original structure of item E (89) from

the ribosomal data set (left) along with our system resulted structure (center) and the structure with the

largest RNAdistance (right). (B) The same results set for E (86, 87). (C) The results set for

B (1052− 1107).
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Figure 5 - Sum Vectors for Dot-Plot Matrix

A 10× 10 dot plot diagram sample, along with its four representing sum vectors:

• The ‘X Sum Vector’ which sums all the dots values along the X axis of the diagram.

• The ‘Y Sum Vector’ which sums all the dots values along the Y axis of the diagram.

• The ‘Diagonal SW-NE Sum Vector’ which sums all the dots along the SW-NE diagonal of the

diagram.

• The ‘Inverse Diagonal SE-NW Sum Vector’ which sums all the dots along the SE-NW inverse

diagonal of the diagram.

Where ‘Position’ refers to a position along the scanned axis, and ‘Magnitude’ stands for the summed pixel

values at that position. The four vectors are being compared to other dot plot diagram’s vectors in the

process of correlation.

Tables
Table 1 - Ribosomal Data-Set

This table summarizes the results for the ribosomal data set, comparing our system results to the results

with the largest RNAdistances. In the fourth column we present our system’s predicted mutation. When

the resulted mutations are identical to RNAdistance, they are presented in bold face. (A) Marks the 2

sequences with a different mutation but similar structure. (B) Marks the 3 sequences with different

secondary structure (Refer also to Figure 4).
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Table 1: Ribosomal Data-Set

Index in the Sequence Length (nt.) Our predicted Mutation with largest
data set name mutation RNAdistance [5]

1 A (765-816) 52 G7C G7C
2 E (68) 46 C28G C28G
3 A (1241-1296) 56 G33C(A) G32C
4 A (820-879) 53 C4A C4A
5 A (588-651) 64 G38C G38C
6 A (995-1045) 55 G41C G41C
7 B (1052-1107) 56 G55A(B) C28U
8 B (589-668) 82 G37U G37U
9 A (136-227) 93 G10U G10U
10 A (1113-1187) 74 G60U G60U
11 B (865-911) 46 C38G C38G
12 E (2676-2731) 57 C3A C3A
13 E (99,100,101) 79 G9C G9C
14 E (90,91,92) 76 G44A(A) G43A
15 E (89) 43 G36C(B) A23C
16 D (8,9,10) 53 C36G G31U
17 A (1420-1480) 56 G47C G47C
18 A (240-286) 47 U5C U5C
19 A (442-492) 41 G24U G24U
20 E (65,66) 57 U22A U22A
21 E (86,87) 39 G29A(B) G5C
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Figure 1: Testcase involving the P5abc subdomain of the tetrahymena thermophila ribozyme
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Figure 2: Testcase involving the L. Collosoma spliced leader RNA
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Figure 3: Testcase involving the hepatitis delta virusoid

23



Figure 4: Ribosomal Data-set Differences
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Figure 5: Sum Vectors for Dot-Plot Matrix
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An Image Processing Approach to Computing Distances 
Between RNA Secondary Structures Plots

Supplementary Data 

The following Dataset was used in the Results section of the article:

 Dataset of the Ribosomal RNA fragments of Thermus thermophilus HB8
based on [1] containing the following 21 fragments:

>Entry:A_(765-816) Length:52 Origin:rRNA of the Thermus thermophilus [AC:NC_006461]
gaaagcguggggagcaaaccggauuagauacccggguaguccacgcccuaaa

>Entry:E_(68) Length:46 Origin:rRNA of the Thermus thermophilus [AC:NC_006461]
ccggaaggucaaggggaggggugcaagccccgaaccgaagccccgg

>Entry:A_(1241-1296) Length:56 Origin:rRNA of the Thermus thermophilus [AC:NC_006461]
gcccacuacaaagcgaugccacccggcaacggggagcuaaucgcaaaaaggugggc

>Entry:A_(820-879) Length:53 Origin:rRNA of the Thermus thermophilus [AC:NC_006461]
gcgcgcuaggucucugggucuccugggggccgaagcuaacgcguuaagcgcgc

>Entry:A_(588-651) Length:64 Origin:rRNA of the Thermus thermophilus [AC:NC_006461]
gccuggggcgucccaugugaaagaccacggcucaaccgugggggagcgugggauacgcucaggc

>Entry:A_(995-1045) Length:55 Origin:rRNA of the Thermus thermophilus [AC:NC_006461]
augcuagggaacccgggugaaagccuggggugccccgcgaggggagcccuagcac

>Entry:B_(1052-1107) Length:56 Origin:rRNA of the Thermus thermophilus [AC:NC_006461]
ccaggagguuggcuuagaagcagccauccuuuaaagagugcguaauagcucacugg

>Entry:B_(589-668) Length:82 Origin:rRNA of the Thermus thermophilus [AC:NC_006461]
cacggucgugggcgagcuuaagccguugaggcggaggcguagggaaaccgaguccgaacagggcgucuaguccgcggccgug

>Entry:A_(136-227) Length:93 Origin:rRNA of the Thermus thermophilus [AC:NC_006461]
ccggaagagggggacaacccggggaaacucgggcuaaucccccauguggacccgccccuugggguguguccaaagggcuuug
cccgcuuccgg

>Entry:A_(1113-1187) Length:74 Origin:rRNA of the Thermus thermophilus [AC:NC_006461]
ccccgccguuaguugccagcgguucggccgggcacucuaacgggacugcccgcgaaagcgggaggaaggagggg

>Entry:B_(865-911) Length:46 Origin:rRNA of the Thermus thermophilus [AC:NC_006461]
cacugauagggcuagggggcccaccagccuaccaaacccugucaaa

>Entry:E_(2676-2731) Length:57 Origin:rRNA of the Thermus thermophilus [AC:NC_006461]
cgcaccucugguuucccagcugucccuccaggggcagaagcuggguagccaugugcg 

>Entry:E_(99,100,101) Length:79 Origin:rRNA of the Thermus thermophilus [AC:NC_006461]
ggacccgggaagaccacccgguggaugggccggggguguaagcgccgcgaggcguugagccgaccggucccaaucgucc



>Entry:E_(90,91,92) Length:76 Origin:rRNA of the Thermus thermophilus [AC:NC_006461]
cggcucgucgcauccuggggcugaagaaggucccaaggguugggcuguucgcccauuaaagcggcacgcgagcugg

>Entry:E_(89) Length:43 Origin:rRNA of the Thermus thermophilus [AC:NC_006461]
ggcugaucucccccgagcguccacagcggcggggagguuuggc

>Entry:D_(8,9,10) Length:53 Origin:rRNA of the Thermus thermophilus [AC:NC_006461]
aaugggggaacccggccggcgggaacgccggucaccgcgcuuuugcgcggggg

>Entry:A_(1420-1480) Length:56 Origin:rRNA of the Thermus thermophilus [AC:NC_006461]
cgggcucuacccgaagucgccgggagccuacgggcaggcgccgaggguagggcccg

>Entry:A_(240-286) Length:47 Origin:rRNA of the Thermus thermophilus [AC:NC_006461]
cccaucagcuaguuggugggguaauggcccaccaaggcgacgacggg

>Entry:A_(442-492) Length:41 Origin:rRNA of the Thermus thermophilus [AC:NC_006461]
cccgggacgaaacccccgacgaggggacugacgguaccggg

>Entry:E_(65,66) Length:57 Origin:rRNA of the Thermus thermophilus [AC:NC_006461]
acuguuuaccaaaaacacagcucucugcgaacucguaagaggagguauagggagcga

>Entry:E_(86,87) Length:39 Origin:rRNA of the Thermus thermophilus [AC:NC_006461]
gacugcgaggccugcaagccgagcaggggcgaaagccgg

1. Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN, Cate JH, Noller HF: Crystal 
structure of the ribosome at 5.5 A resolution. Science 2001, 292:883–896.


